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1. INTRODUCTION

In a test of the utility of hyperspectral image data to precision
farming, we have collected several inter-dependent data sets
at an experimental farm on Maryland’s Eastern Shore during
the 1999 growing season, focusing on weed identification
in corn and soybean crop fields. These data included: hy-
perspectral image data from an airborne instrument; ground
feature location data collected with a differential GPS unit;
geo-located radiometer and sun photometer measurements
at ground level. In addition a database for the cost of all field
inputs, materials and labor, was built to allow evaluation of
the economic viability of incorporating hyperspectral data as
an additional information source for precision farming.

By collecting ground based radiometer and sun photome-
ter measurements coincident with sensor over-flights, we were
able to identify and partition sources of variation in the AISA
image data so that target signals could be more accurately
characterized. We used this to provide atmospheric correc-
tion for our efforts to identify areas of weed infestation dur-
ing the early stages of crop emergence. Later in the grow-
ing season we used these methods for identifying different
strains of crops in both maturing soybean and corn fields.

2. METHODS OF DATA COLLECTION

Field experiments were conducted coordinating the AISA sen-
sor flown aboard a twin engine Navaho aircraft by 3DI of
Easton, MD with teams on the ground collecting radiomet-
ric data. The field work was conducted at Chesapeake Farms
on the Delmarva Peninsula near the town of Rock Hall, MD
on May 28, July 8, and August 3, 1999.

2.1. The AISA sensor

The work described here is based on data from the Airborne
Imaging Spectrometer (AISA) built by Specim of Finland

[1] and has a spectral range of 430 to 900 nm, a swath width
of 286 pixels is imaged at a spatial resolution of 1m, 2m, and
3m for an aircraft flying at 1 km, 2 km, and 3 km respec-
tively. In addition simultaneous down-welling irradiance is
measured. The instrument orientation is monitored by an In-
ertial Measurement Unit, and its position is recorded by GPS
(Global Positioning Satellite). The data was geo-rectified to
UTM coordinates and processed to both at sensor radiance
measurements, and to at sensor reflectance, by ratioing the
up-welling radiance to the down-welling radiance.

2.2. Ground Truth Measurements

Three Analytical Spectral Devices hand held radiometers -
two model PS2’s and one model FR were used for the ground
truth measurements of up-welling radiance and reflectance.
Also a Microtops 2 portable sun photometer was used to gather
aerosol optical thickness measurements at regular intervals
during the flights. Location of sampling points and field bound-
aries was made with a Trimble Pro XR system. Portable stands
were designed to hold the field radiometer heads and a spec-
tralon panel (at a fixed distance from the head) for reflectance
measurements. With the stands, spectral measurements at
varying heights up to 2m over ground samples could be made.

3. ANALYSIS

3.1. Atmospheric Correction

An important part of applying hyperspectral data to preci-
sion farming will be monitoring temporal changes in spec-
tral properties as an indicator of crop health. This requires
that the hyperspectral imagery be transformed into reflectance
spectra, which is an intrinsic property on the surface inde-
pendent of solar illumination and atmospheric effects.

To perform atmospheric correction and subsequent con-
version to reflectance, we have used the three band method



of Gao et. al. [3], [4] as implemented in his ATREM LINE
code which he has made available to us. This code explic-
itly estimates the gaseous water content in the atmosphere on
a pixel-by-pixel basis from water absorption bands and uses
scene estimates for aerosol and ozone. The absorption of the
atmosphere is modeled by a line-by-line model for the at-
mospheric gases and takes into account the scattering in the
atmosphere. Thus this code can be adapted to the AISA in-
strument, which in our work has spectral resolution around 7
nm. Because of the limited spectral coverage of AISA, from
400 nm to 900 nm the only water absorption band that can
be used is the one at 818 nm.

To assess the atmospheric correction we used 2m reso-
lution data taken on August 3, 1999, close to solar noon, in
which a “bright” road was present. No visible clouds were
present at the time of the measurements. The ground radiome-
ter measurements were taken 13 minutes after the aircraft
passed over the road. Fig 1 shows a small part of a flight line
with road pixels marked in red for comparison with the ra-
diometer measurements taken at the numbered yellow points
obtained by GPS.
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Figure 1: On the top is the AISA imagery used in the test of
atmospheric correction. On the bottom left is the at sensor
radiance spectra and on the bottom right is the atmospher-
ically computed reflectance spectra in red (standard devia-
tion in blue) and the ground measured reflectance spectra in
green (standard deviation in yellow).

From the red pixels we obtain the at sensor radiance as
shown in Fig. 1 (bottom left) where the vertical axis has been
expanded to emphasize the spectral features. Note the water
absorption band around 820 nm. Using the ATREM LINE
code with an aerosol model of 50 km visibility and ozone
concentration of 0.34 atm-cm we obtain the reflectance spec-

tra at the ground. This is shown in blue (red standard devia-
tion) together with the ground measurements in green (yel-
low standard deviations) in Fig. 1(bottom right). The atmo-
spheric correction has removed the water absorption while
the lack of agreement may be due to adjacency effects.

3.2. Weed Detection

Early detection of weeds through remote sensing can be an
important tool to a farmer for improving crop yield, and, if
variable rate equipment for herbicide application is available,
for reducing costs and reducing environmental impact. The
images in Fig. 2 show the results of a minimum noise frac-
tion (MNF) [2] classification of a corn field (right) and soy-
bean field (left). The algorithm was applied to apparent re-
flectance data at 2m resolution from May 28, 1999. The col-
ormap chosen for the corn field highlights weed infestation
density; bare soil appears as blue with increasing density of
weeds from green to yellow to red designed as a ”spray/do
not spray” tool for the farm. In the right part of Fig. 2 is

Figure 2: On the left a Vegetation index of a soybean field
at early emergence. On the right a Minimum Noise Fraction
classification of a corn field at early emergence.

shown a Minimum Noise Fraction [2] classification of a corn
field performed on apparent reflectance spectra data. Bare
soil appears as purple with increasing density of weeds from
green to yellow to red.

It can bee seen that the processed hyperspectral imagery
provides a useful tool for the early detection of weeds.

3.3. Differentiation of Seed Types from Mature Corn and
Soybeans

The ability to differentiate seed type via remote sensing of
mature crops has implications for agricultural monitoring ac-
tivities. Knowledge of planted seed types in local to global



Corn A Corn B Soy:C Soy:D
Pioneer Pioneer Asgrow Pioneer
34K82 33G26 AG4301 9421STS

SVM 99.9 99.9 94.6 74.3
Min-Dist. 99.7 99.8 91.6 61.4

Table 1:
Performance comparison differentiating crop types.

crop monitoring activities yields important information con-
cerning countless crop characteristics like maturation poten-
tial, health, resistance to disease/pests/drought, and poten-
tially the quantification and assessment of Genetically Mod-
ified Organism (GMO) plantings. Recently we have applied
a powerful new method of supervised classification, the Sup-
port Vector Machine (SVM), to hyperspectral data that is not
affected by its high dimensional nature. [5], [6].

From 2m resolution data taken on Aug.3, 1999 we ran-
domly selected 1 % of pixels in fields two kinds of corn, type
A (Pioneer 34K82), and type B (Pioneer 33G26), two types
of soybeans, type C (Asgrow AG4301) and type D (Pioneer
9421STS). The spectra of the training classes is shown in
Fig. 3 where it is seen that differentiation is not obvious.
In Table 1 is a comparison of the users performance accu-

080399_cf_l2_2m/random_B.1 train/test  .01/.99
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Figure 3: Training data from sensor apparent reflectance
Spectra of mature crops of two different corn and two dif-
ferent soy bean seed types. From left to right, top to bottom
we have crop type A, B, C, D.

racy for the SVM classifier and a minimum-Euclidean dis-
tance classifier. The SVM classifier has overall better perfor-
mance, but in particular on distinguishing the soybean classes
it has substantially improved performance.

3.4. Economic Implications

To gain insight as to how this imagery could be of economic
value consider the soybean field shown in Fig. 2 The total
acreage for this soybean field is 24.1 acres. The total area
with indication of weed presence, (represented in pink) is

13 acres. After the flight the entire field was subsequently
treated with a series of post-emergence herbicides at a total
material cost of $32.40 per acre not including cost for labor
and equipment.

Treating the entire field cost $780.84. Treating only the
13 acres with weeds present would cost $421.20, represent-
ing a total savings of $359.64 or $14.92 an acre. The la-
bor and equipment cost, estimated at $5/acre, would only be
saved in larger fields where entire sections were weed free.
Since this condition is rare in the Delmarva Region, these
savings were not included here. To take advantage of this
saving, variable rate equipment for applying the herbicides
must be available, as well as an estimate of the cost of pro-
ducing the imagery. Neither have been included. However,
we feel this does show the application of remote sensing im-
agery to precision farming is worthy of further study.
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